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ABSTRACT

The exponential increase in available microbial genome sequences coupled with predictive bioinformatic tools is
underscoring the genetic capacity of bacteria to produce an unexpected large number of specialized bioactive compounds.
Since most of the biosynthetic gene clusters (BGCs) present in microbial genomes are cryptic, i.e. not expressed under
laboratory conditions, a variety of cloning systems and vectors have been devised to harbor DNA fragments large enough to
carry entire BGCs and to allow their transfer in suitable heterologous hosts. This minireview provides an overview of the
vectors and approaches that have been developed for cloning large BGCs, and successful examples of heterologous

expression.
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INTRODUCTION

Bioactive compounds of microbial origin with their structural
novelty, diversity and complexity are still an invaluable source
for drug discovery and development (Monciardini et al. 2014;
Genilloud 2017). The exponential increase in available micro-
bial genome sequences coupled with predictive bioinformatic
tools are underscoring the genetic capacity of bacteria to pro-
duce an unexpected large number of specialized compounds.
However, only a small fraction of these compounds can be de-
tected in the laboratory, since most of the corresponding biosyn-
thetic genes are silent or poorly expressed under conventional
laboratory culture conditions (Rutledge and Challis 2015; Blin
et al. 2017; Tracanna et al. 2017). While the organization of genes
in biosynthetic gene clusters (BGCs) facilitates their identifica-
tion and engineering, these approaches are often hampered by
lack of or limited genetic tractability of the producing microrgan-
isms (Galm and Shen 2006; Rutlege and Challis 2015). Thus, stan-
dard approaches such as overexpression of a cluster-associated

activator, deletion of a cluster-associated repressor, replacement
of natural promoters with constitutive or inducible promoters,
or overexpression of pathway precursors are not immediately
applicable to most microbial strains. Devising methods to ge-
netically manipulate a microbial strain with interesting BGC(s)
can be a lengthy and sometime unsuccessful endeavor. This is
particularly true for actinomycetes, the main producers of sec-
ondary metabolites and the focus of this minireview.
Important research tools for genome projects were devel-
oped in the 1990s, when DNA sequencing heavily depended
on producing high-quality libraries, particularly large-insert li-
braries, well before the introduction of next-generation se-
quencing (NGS) and the deluge of microbial genome sequences.
Relevant tools were yeast artificial chromosomes (YACs) for
cloning and assembling large DNA fragments (Monaco and Larin
1994) and artificial chrosomomes for replication in bacteria
(Shizuya et al. 1992; Ioannou et al. 1994). The latters were distin-
guished on the basis of the replicon they employed and named
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BAC and PAC if they relied on plasmid F1- or bacteriophage P1-
derived replicon, respectively. YAC, BAC and PAC vectors could
easily accommodate DNA inserts exceeding 100 kbp.

The logical step was then to combine BAC or PAC vectors
with genetic elements that allowed their introduction in suit-
able actinomycete hosts. One of the early examples is repre-
sented by the PAC-derived Escherichia coli-Streptomyces shuttle
vectors, designated ESACs, constructed for antibiotic-producing
actinomycetes (Sosio et al. 2000; Miao et al. 2005; Galm and Shen
2006). ESAC vectors could assist in various genetic manipula-
tions of the biosynthetic pathways through cloning of entire
clusters and their heterologous expression in a host amenable
to in vivo genetic manipulation. However, at the time ESAC and
related vectors were developed, rapid whole genome sequenc-
ing was not available, and methods for creating large-insert DNA
libraries were not well developed; thus, the use of ESAC vec-
tors could require assembling large DNA inserts from cosmids
through multiple rounds of homologous recombination (Sosio,
Bossi and Donadio 2001).

While YAC, BAC and PAC tools are no longer necessary with
NGS technology, their use is witnessing a renaissance thanks
to the increasing number of deposited genome sequences, im-
proved bioinformatics tools for BGC identification and improved
methods for library construction. Although the successful het-
erologous expression of an entire BGC remains unpredictable,
several cloning and heterologous host systems have been devel-
oped, providing ample choices (Alduina and Gallo 2012; Ongley
et al. 2013; Nah et al. 2017).

In this minireview, we will provide an overview of the vectors
that have been developed for cloning large BGC and the strat-
egy that has been used for their successful heterologous expres-
sion. Because of space constraints, this overview will be limited
to actinomycete-derived metabolites. Nonetheless, many of the
principles developed for actinomycetes have been successfully
employed for other important hosts such as E. coli, Pseudomonas
putida, Bacillus subtilis (Ongley et al. 2013; Rutledge and Challis
2015; Nah et al. 2017).

POSSIBLE APPROACHES FOR HETEROLOGOUS
EXPRESSION

Heterologous expression of an entire BGC represents one of the
most promising approaches to overcome the hurdle of develop-
ing a gene transfer system for the native producer. It not only al-
lows the production of a desired metabolite in a host amenable
to genetic manipulation, but it can also lead to the development
of general rules for efficient production of different classes of
metabolites in defined host(s), without the need to devise ad hoc
conditions for cultivation of or establish metabolic models in dif-
ferent hosts (Ongley et al. 2013).

Vectors suited for heterologous expression of entire BGCs
must be effectively mobilized into the chosen host(s), where
they can be stably maintained, possibly without antibiotic addi-
tion to select for construct presence. Normally, this is achieved
by site-specific integration of the incoming DNA by a vector-
encoded integrase. In addition, the ability to accommodate large
DNA inserts is an important requisite, since many BGCs are
too large to fit within the cloning capacity of cosmid and fos-
mid vectors. Various approaches for heterologous expression of
secondary metabolite biosynthetic pathway have been pursued
in the last few years, and they made use of different E. coli-
Streptomyces shuttle vectors based on bacterial or P1-derived ar-
tificial chromosomes (Jones et al. 2013; Alt and Wilkinson 2015;

Nah et al. 2015; Kepplinger et al. 2017; Pyeon et al. 2017), of
transformation-associated recombination (TAR; Yamanaka et al.
2014) and of integrase-mediated recombination (IR; Du et al.
2015). These approaches are schematized in Fig. 1. Table 1 lists
the key features of the BAC, PAC, TAR and IR vectors used
over the last decade for cloning and heterologous expression.
Figure 2 shows examples of secondary metabolites heterolo-
gously expressed with the herein described approaches.

CLONING SYSTEMS FOR LARGE BGCs
The TAR system

One of the early reports made use of RecET-mediated linear-
plus-linear homologous recombination and was used success-
fully to clone BGCs of 10-52 kbp from the genome of Photorhab-
dus luminescens and express two of them in E. coli (Fu et al. 2012;
Ongley et al. 2013). Based on this system, TAR was used for di-
rect cloning of 20-73 kbp BGCs (Yamanaka et al. 2014). The TAR
system exploits the high level of homologous recombination in
the yeast Saccharomyces cerevisiae. Recent TAR cloning vectors,
such as pCAPO1, consist of three elements: for yeast, an au-
tonomous replicating sequence (ARS), a plasmid maintenance
element (CEN) and an auxotrophic marker; for E. coli, a pUC ori
that could stably carry inserts larger than 50 kbp and an oriT for
conjugation; and for actinobacteria, an attP-int system for chro-
mosomal integration (Fig. 3). The capture vectors are also pro-
vided with an antibiotic resistance gene for selection of both
E. coli and actinomycete recombinants (Yamanaka et al. 2014;
Tang et al. 2015; Bilyk et al. 2016). In this way, the target DNA can
be assembled in yeast, isolated and introduced into E. coli, and
then directly conjugated into the desired actinomycete, where it
can be maintained after chromosomal integration (Table 1). The
TAR strategy relies on the ‘capturing vector’, which contains the
two distal ends of the target DNA segment. The linearized cap-
turing vector and the restriction enzyme digested genomic DNA
are assembled into yeast, where the target DNA fragment is cap-
tured by homologous recombination (Fig. 1B).

Examples of BGCs isolated by the TAR technique using
pCAPO1 vector and expressed in a heterologous host include
(Table 2) the 73-kbp taromycin A BGC from a marine Sac-
charomonospora sp. (Fig. 2), which was successfully expressed
in Streptomyces coelicolor M1146 after deleting the gene for a
LuxR-type regulator (Yamanaka et al. 2014); the 21-kbp ente-
rocin BGC from Salinispora pacifica, which was expressed in two
different Streptomyces strains (Bonet et al. 2015); and the 44-
kbp nataxazole BGC from Streptomyces sp. TU6176 which led to
production of the nataxazole precursor AJ9561 in S. lividans
JT46 (Cano-Prieto et al. 2015). In addition, Jordan and Moore
(2016) identified the ammosamide BGC through direct cloning
in pCAPO1 and heterologous expression in S. coelicolor M512,
demonstrating the complex set of biosynthetic genes necessary
for biosynthesis of this pyrroloquinoline alkaloid through gene
deletions in the heterologous host (Table 2). A modified version
of pCAPO1 has been utilized to clone PKS-NRPS hybrid BGCs
from two Salinispora strains and to identify thiotetronic acid an-
tibiotics as their products after expression in S. coelicolor M1152
(Tang et al. 2015) (Fig. 2). The vector pCLY10, another TAR shuttle
vector, was utilized to clone the 36-kbp grecocycline BGC from
Streptomyces sp. Acta 1362 and to express it in Staphylococcus albus
J1074, where several grecocycline congeners were detected (Bilyk
et al. 2016).

An in vitro variation of the TAR system is represented by
CATCH (Cas9-assisted targeting of chromosome). The method is
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Figure 1. Schematic representations of different cloning systems for large BGCs. (A) Diagram of in vitro cloning using BAC/PAC vectors; (B) in vivo cloning using the
transformation-associated recombination (TAR) system in yeast; (C) in vitro Cas9-Assisted Targeting of Chromosome (CATCH) system; (D) integrase-mediated recom-

bination (IR) system in the native producer. BGCs are indicated by thick, colored lines. See text for details.

Table 1. List of cloning vectors for large inserts.

Cloning Replicon
system Vector Size (kbp) (E. coli) Features Derived from References
BAC/PAC pStreptoBAC V 16.2 F factor aac(3)IV, pBACe3.68 (Frengen Miao et al. 2005
oriT-attP-int? ¢3! et al. 1999)
PSBAC 12.0 ori2 (single aac(3)1V, pCC1BAC Liu et al. 2009
copy) oriV’ oriT-attP-int?5T (EPICENTRE)
(high copy) parA, parB and
par C
PESAC13 23.3 P1 lytic aph(3)II, tsr, pPAC-S1 (Sosio et al. www.biost.com;
replicon oriT-attP-int? ¢3! 2000) Jones et al. 2013
PESAC13A 22.7 P1 lytic aac(3)1V, tsr, pESAC13 This work
replicon oriT-attP-int? ¢3!
TAR pCAPO1 9.0 puC ori aph(3)I11, SuperCosl1 (Stevens, Yamanaka et al. 2014
oriT-attP-int? ¢3! Hari and Boddy
TRP1 2013)
ARSH4/CEN6
IR pSV:attB6-HR’ + - neo, oriT, attB pUC119::neo (Li et al. Du et al. 2015
pKC1139::attP6- 2009)
HR”
pUC ori aac(3)1V, oriT, oris PpKC1139 (Bierman et

+ rep attP6 al. 1992)

aac(3)IV, apramycin resistance marker; aph(3)Il, kanamycin/neomycin resistance marker; neo, kanamycin resistance marker; tsr, thiostrepton resistance marker; TRP1,
auxotrophic marker; int?©3!, C31 integrase; int?5™, $BT1 integrase; oriT, origin of transfer; ARSH4/CENG, yeast origin of replication and centromere; ori® + rep, temper-
ature sensitive origin and replication protein; attB6, modified attachment site; attP6, modified attachment site; parA, parB and parC, E. coli partitioning system genes;

HR’, HR”, homologous regions.

based on the in vitro application of RNA-guided Cas9 nuclease
(iang and Zhu 2016), which can cleave in vitro intact bacterial
chromosomes embedded in agarose plugs at target sequences.
The resulting fragments can be subsequently ligated through
Gibson assembly (Gibson et al. 2009) (Fig. 1C). This system was
used to clone the 36-kbp jadomycin BGC from S. venezuelae and
the 32-kbp chlortetracycline BGC from S. aureofaciens (Jiang et al.
2015).

The IR system

Recently, a strategy was developed based on integrase-mediated
site-specific recombination and used for simultaneously engi-
neering a Streptomyces genome and cloning a BGC. The attP-int
loci from phages ®C31 and ®BT1 have been used to construct
versatile vectors which can integrate into different attB sites in
Streptomyces (Bierman et al. 1992; Gregory, Till and Smith 2003;
Gonzalez-Quinonez et al. 2016). To increase the diversity of the
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Figure 2. Examples of metabolites produced by heterologous expression using the TAR system (1, 3) or BAC/PAC vectors (2, 4-8).

®BT1 attP-attB pair, the central dinucleotide sequence of attB and
attP was mutated (Du et al. 2015). Using a non-replicating and a
temperature-sensitive replicon, homologous recombination was
used for targeted integration of the mutated attB and attP at the
distal ends of the BGC of interest. Then, ®BT1 Int excised the
target region from the chromosome, and the plasmid containing
the BGC was recovered at the permissive temperature (Fig. 1D).
This system was validated by cloning the 25-kbp actinorhodin
(act) BGC, the 45-kbp napsamycin BGC and a 157-kbp segment
containing the daptomycin BGC (Fig. 2). The fidelity of the pro-
cedure was confirmed by complementation of a Aact S. coelicolor
mutant (Du et al. 2015).

(A)

Escherichia coli-Streptomyces shuttle BAC/PAC vectors

Pioneering work with BAC and PAC vectors demonstrated the
capacity to clone DNA inserts approaching 200 kb in length,
which could be stably maintained in a heterologous Streptomyces
host (Sosio et al. 2000; Martinez et al. 2004; Miao et al. 2005). The
early E. coli-Streptomyces shuttle vectors pBELOBAC and pPAC-S1
have since been replaced by several improved variants, such as
pStreptoBAC V, pSBAC and pESAC13, which contains the oriT site
for conjugative transfer into actinomycetes and have been suc-
cessfully used for heterologous expression (Table 1, Table 3 and
Fig. 3).

pESAC13

111wy

pESACI3A

AT T

Figure 3. Circular maps of pCAPO1, pESAC13 and pESAC13A. (A) pCAPO1 consists of three elements: for direct cloning and manipulation in yeast (CEN/ARS, TRP1);
for maintenance and manipulation in E. coli (pUC ori) and for chromosomal integration and expression in actinobacteria (attP-int system) (Yamanaka et al. 2014); (B)
PESAC13 was constructed by inserting a 760-bp DNA fragment containing oriT from the RK2 replicon (Simon, Priefer and Piihler 1983) into the unique BstXI site of
PPAC-S1 (Sosio et al. 2000). pESAC13A was constructed by replacing through Red/ET recombineering the aph(3)II gene (conferring kanamycin resistance) in pESAC13
with the aac(3)IV gene (conferring apramycin resistance) from pSET152 (Bierman et al. 1992).
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Table 2. Examples of heterologous expression of BGCs cloned by the TAR approach.

Biosynthetic BGC size
Vectors Natural product (producer) class (kbp) Heterologous host References
pCAPO1 Marinopyrrole (Streptomyces NRP/PK 30 S. coelicolor M512 Yamanaka et al. 2014
sp. CNQ418)
Taromycin A NRP 73 S. coelicolor M11462 Yamanaka et al. 2014
(Saccharomonospora sp.
CNQ-490)
Enterocin (Salinispora PK 21 S. lividans TK23 S. Bonet et al. 2015
pacifica CNT-150) coelicolor M1146
Nataxazole (Streptomyces sp. PK 44 S. lividans JT46 Cano-Prieto et al. 2015
TU6176)
Ammosamides A-C RiPP 35 S. coelicolor M512 Jordan and Moore 2016
(Streptomyces sp. CNR-698)
pCAPO3P Thiolactomycin (S. pacifica PK-NRP 22 S. coelicolor M1152 Tang et al. 2015
CNS-863)
Tiotetroamide (S. PK-NRP 33 S. coelicolor M1152 Tang et al. 2015
afghaniensis NRRL 5621)
pCLY10°¢ Grecocycline (Streptomyces PK 36 St. albus J1074 Bilyk et al. 2016

sp. Acta 1362)

PK = polyketide; NRP = non-ribosomal peptide; RiPP = ribosomally synthesized, posttranslationally modified peptide;

2after cluster refactoring;

bderivative of pCAPO1 characterized by the counterselectable marker URA3 under the strong pADH1 promoter; see Tang et al. (2015) for further details;

¢shuttle vector for E.coli-yeast-actinomycetes (Bilyk et al. 2016).

The vector pStreptoBAC V, which contains the ®C31 attP-
int system (Table 1), was used for cloning the 128-kb segment
containing the BGC for the NRPS-made lipopeptide daptomycin
(Fig. 2) and for its analog A21978C from S. roseosporus NRRL
11379, and their expression in different S. lividans strains (Miao
et al. 2005; Penn et al. 2006). Although the antibiotic yields were
low, production was improved by deleting the act BGC and by
medium optimization (Penn et al. 2006). Later, pStreptoBAC V
was used for cloning and heterologous expression of the 65-kb
iso-migrastatin BGC in different Streptomyces hosts (Feng et al.
2009).

The pSBAC vector, which contains the ®BT1 attP-int system
(Table 1), was used for cloning the 90-kb PKS-NRPS BGC for
the macrolide meridamycin (Fig. 2) from Streptomyces sp. NRRL
30748 and its heterologous expression in S. lividans K4-114, a
Aact strain. Production of meridamycin and its 3-nor analog
was observed only upon inserting the ermEx promoter in front
of the NRPS-PKS genes, and it was enhanced by feeding the
biosynthetic precursor diethylmalonate (Liu et al. 2009). The pS-
BAC vector has been subsequently used for cloning two PKS I
BGCs, for tautomycetin (80 kb from Streptomyces sp. CK4412) and
pikromycin (60 kb from S. venezuelae ATCC 15439), applying the
plasmid rescue technique (Nah et al. 2015; Pyeon et al. 2017). For
tautomycetin, while introduction of the pSBAC in naive strains
led to similar production levels as in the original host, tan-
dem transfer of the constructs in Streptomyces sp. CK4412 or
in S. coelicolor M145 dramatically increased tautomycetin pro-
duction (Nah et al. 2015). Similarly, when the pikromycin BGC
was tandemly introduced into S. lividans TK21, production of 10-
deoxymethynolide and pikromycin was observed, at levels 1.6-
to 1.8-fold the parental strain (Pyeon et al. 2017).

Over the last few years, there have been several reports
of heterologous expression of a variety of natural products,
mostly generated by large modular PKS and NRPS systems, in
different Streptomyces hosts using the PAC derivative pESAC13
(Table 3). The pESAC13 vector is a derivative of pPAC-S1 (Sosio
et al. 2000). It contains an oriT locus for conjugal DNA transfer
from E. coli and comes in two flavors: the original pESAC13, used

for all work listed in Table 3, and the pESAC13A variant, carrying
an additional selection marker for apramycin resistance (Fig. 3).
The papers listed in Table 3 have enabled production of the de-
sired metabolites in a genetically tractable host with sometimes
yield improvements as compared to the native host or produc-
tion of new congeners. It should be noted that all/most of the
BGCs listed in Table 3 were isolated after screening large insert
libraries in pESAC13 custom-produced by the specialized com-
pany Bio S&T (Montreal, Canada; www.biost.com).

Jankowitsch et al. (2012) expressed the 100-kb roseoflavin BGC
from S. davawensis JCM 4913 (Fig. 2) in S. coelicolor M1152. The
S. tsukubaensis NRRL 18488 BGC for FK506 (tacrolimus) (Fig. 2),
a clinically important immunosuppressant, was introduced as
part of a 130-kb ESAC clone into four different S. coelicolor strains
(M512, M1146, M1152 and M1154). These strains all produced
FK506 with significant yield improvements upon overexpres-
sion of a BGC-associated positive regulator (Jones et al. 2013).
The utility of heterologous expression in S. coelicolor M1152 was
also demonstrated for simocyclinone produced by S. antibioticus
Ti6040 (Fig. 2). While the native host is particularly challenging
for genetic manipulation, manipulation and functional analysis
of the symocyclinone, BGC was possible in the heterologous sys-
tem (Schafer et al. 2015).

Upon screening an ESAC library of S. toyocaensis genomic
DNA, Yim et al. (2016) identified a clone with a 140-kb insert con-
taining the complete BGC for the glycopeptide A47934 (Fig. 2).
After mobilizing it into S. coelicolor M1146, these authors were
able to further decorate the A47934 scaffold following intro-
duction of additional tailoring genes (Yim et al. 2016). Heterol-
ogous expression of azalomycin, a 36-membered aminopolyol
macrolide, in S. lividans TK24 was observed using an ESAC clone
carrying a 146-kbp insert (Hong et al. 2016). Production of aza-
lomycin was achieved when the heterologous host was fed
4-guanidinobutyramide, a specific precursor of the azalomycin
starter unit (Hong et al. 2016). Also, the heterologous host was
able to methylate the guanidino group, notwithstanding that
the cloned fragment did not contain the required methylase
(Hong et al. 2016). The last reported example is related to the
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Table 3. Examples of heterologous expression of BGCs cloned in BAC/PAC vectors.

Natural product Biosynthetic BGC size
Vector (producer) class (kbp) Heterologous host References
pStreptoBAC V Daptomycin (S. NRP 128 S. lividans TK64 and Miao et al. 2005;
roseosporus NRRL 11379) TK23 Penn et al. 2006
Iso-migrastatin (S. PK-NRP 65 S. lividans K4-114, S. Feng et al. 2009
platensis NRRL18993) coelicolor M512, S.
albus J1074, S.
avermitilis SUKA4
and SUKA5S
PSBAC Meridamycin PK-NRP 90 S. lividans K4-1142 Liu et al. 2009
(Streptomyces sp. NRRL
30748)
Tautomycetin PK 80 S. coelicolor M145, S. Nah et al. 2015
(Streptomyces sp. CK4412 lividans TK21
Pikromycin (S. PK 60 S. lividans TK21, S. Pyeon et al. 2017
venezuelae ATCC 15439) coelicolor M145
pESAC13 Roseoflavin (S. riboflavin 106 S. coelicolor M1152 Jankowitsch et al.
davawensis JCM 4913) (vitamin B2) 2012; Schwarz et al.
analog. 2016
FK506 (S. tsukubaensis PK 83 S. coelicolor M512, Jones et al. 2013
NRRL 18488) M1146, M1152 and
M1154
Salinomycin (S. albus PK 120 S. coelicolor M1154 Luhavaya et al. 2014
DSM 41398)
Anthracimycin PK 53 S. coelicolor M1146, Alt and Wilkinson
(Streptomyces sp. T676) M1152 and M1154 2015
Chaxamycin (S. PK 80 S. coelicolor M1152 Castro et al. 2015
leeuwenhoekii)
Symocyclinone (S. PK 72 S. coelicolor M1152 Schéfer et al. 2015
antibioticus T1i6040)
A47934 (S. toyocaensis NRP 68 S. coelicolor M1146 Yim et al. 2016
NRRL 15009)
Azalomycin (S. PK 99 S. lividans TK24 Hong et al. 2016
malaysiensis DSM4137)
Vancoresmycin PK/NRP 141 S. coelicolor M1152 Kepplinger et al. 2017
(Amycolatopsis sp.
DEM30355)

PK = polyketide; NRP = non-ribosomalpeptide
2after cluster refactoring

identification, cloning and expression in S. coelicolor M1152 of
vancoresmycin encoded by a 141-kbp PKS-NRPS BGC from Amy-
colatopsis sp. ST 101170 (Kepplinger et al. 2017) (Fig. 2). This
represents so far the largest gene cluster to be expressed in a
heterologous host and one of the few examples of successful in-
tergeneric expression.

Recently, the broad-host range, transferable BAC vec-
tors pSMART-BAC-S and pBAC-SBO have been developed
by Lucigen (www.lucigen.com). These vectors have been
used for the efficient preparation of two environmental li-
braries, highlighting their potential for discovering new com-
pounds from the metagenome (https://www.lucigen.com/docs/
posters/Soil-Metagenomics-Jan-13-SLAS.pdf).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

A variety of ingenious cloning systems and vectors have been
devised to harbor DNA fragments large enough to carry en-
tire BGCs. Of the systems described above, the TAR, CATCH
and IR systems require precise knowledge of the BGC(s) of in-
terest. While conceptually simple, the IR approach requires an

original producer that is genetically accessible, a requisite that
limits this method to strains that have been well characterized.
The TAR and CATCH systems make use of in vivo or in vitro re-
combination, respectively, and thus bypass the need to geneti-
cally access the native producer. These systems may be the best
approach when the objective is mobilization of a single, large
BGC. However, both systems are cluster-specific and cloning of
multiple clusters from a single source would require working in
parallel with different constructs. In contrast, BAC and PAC DNA
libraries do not require a priori knowledge of the BGC(s) and can
in principle provide the entire repertoire of BGCs from a single
strain. However, the quality of the DNA library is essential, espe-
cially for large BGCs: ideally, the average insert size of the library
should be larger than the target BGC, and the library should con-
sist of about 10 genomic equivalents.

Potentially, these libraries can also provide a way for access-
ing BGCs from complex environments (i.e. metagenomics DNA
libraries). Expression of environmental DNA for antibiotic dis-
covery is an attractive proposition, but up to now only few BGCs,
usually of the small size, have been expressed (Ongley et al. 2013;
Katz, Hover and Brady 2016). Interestingly, BGCs have been built
from smaller fragments using the TAR system, leading to the
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assembly of 90-kb BGCs (Kim et al. 2010; Feng, Kallifidas and
Brady 2011).

At the moment, the E. coli-Streptomyces shuttle BAC/PAC vec-
tors seem the most suitable systems for cloning and express-
ing large BGCs. Using current recombination techniques, cloned
clusters of interest can be retrofitted with desirable selectable
markers, maintenance system or compound-modifying genes,
thus adapting them to the specific needs of the investigator.
The ease of generating whole genome sequences and the high-
quality, large insert libraries that can be made in pESAC13 and
similar vectors make these systems attractive for analyzing ge-
netically intractable strains that are however (potential) produc-
ers of a large number of bioactive metabolites.
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